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Abstract—Small autonomous power systems (SAPS) that in-
clude renewable energy sources are a promising option for isolated
power generation at remote locations. The optimal sizing problem
of SAPS is a challenging combinatorial optimization problem, and
its solution may prove a very time-consuming process. This paper
initially investigates the performance of two popular metaheuristic
methods, namely, simulated annealing (SA) and tabu search (TS),
for the solution of SAPS optimal sizing problem. Moreover, this
paper proposes a hybrid SA-TS method that combines the advan-
tages of each one of the above-mentioned metaheuristic methods.
The proposed method has been successfully applied to design
an SAPS in Chania region, Greece. In the study, the objective
function is the minimization of SAPS cost of energy (€/kWh), and
the design variables are: 1) wind turbines size, 2) photovoltaics
size, 3) diesel generator size, 4) biodiesel generator size, 5) fuel cells
size, 6) batteries size, 7) converter size, and 8) dispatch strategy.
The performance of the proposed hybrid optimization method-
ology is studied for a large number of alternative scenarios via
sensitivity analysis, and the conclusion is that the proposed hybrid
SA-TS improves the obtained solutions, in terms of quality and
convergence, compared to the solutions provided by individual SA
or individual TS methods.

Index Terms—Hybrid power systems, optimal sizing, opti-
mization methods, power generation dispatch, renewable energy
sources, simulated annealing (SA), small autonomous power
systems (SAPS), solar energy, tabu search (TS), wind energy.

I. INTRODUCTION

ODAY more diverse challenges have emerged: climate

change, economic recession, and security of energy
supply. Moreover, the rapid depletion of fossil fuels and their
high and volatile prices have necessitated an urgent need for
alternative energy sources to meet the energy demands [1].
Renewable energy sources (RES), such as wind and solar, are
clean, inexhaustible, and environmentally friendly alternative
energy sources with negligible fuel cost. However, RES tech-
nologies, such as wind turbines (WTs) and solar photovoltaics
(PVs), are dependent on a resource that is unpredictable and
depends on weather and climatic changes, and the production
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of WTs and PVs may not match with the load demand, so there
is an impact on the reliability of the electric energy system.
This reliability problem can be solved by a proper combination
of the two resources (WTs and PVs) together with the use
of an energy storage system, such as batteries, as a type of
energy-balancing medium [2]. Such a system, which is called
a small autonomous power system (SAPS), is a promising
option for isolated power generation at remote locations [3].
To be more precise, an SAPS is an isolated hybrid system
with renewable energy sources, conventional power sources
(usually diesel generators), and energy storage. Proper sizing
of the overall SAPS is challenging, due to the large number of
design options and the uncertainty in key parameters, such as
load size and future fuel price. Renewable energy sources add
further complexity because their power output is unpredictable
and intermittent.

The problem of SAPS optimal sizing belongs to the cate-
gory of combinatorial optimization problems, since the sizes of
system’s components, which constitute the design variables, can
take only discrete values. For the solution of this problem, var-
ious deterministic optimization techniques have been proposed
[4]; however, these methods may provide suboptimal solutions,
which are usually combined with increased computational com-
plexity. The most direct method for solving the SAPS sizing
problem is the complete enumeration method that is used by
HOMER software [5]; however, it can prove to be extremely
time consuming. Moreover, a recent review of computer tools
has shown that there is no energy tool that addresses all issues
related to SAPS optimal sizing, but instead the “ideal” energy
tool highly depends on the specific objectives that must be ful-
filled [6].

In recent years, new methods have been developed, in order
to solve many types of complex optimization problems, partic-
ularly those of combinatorial nature. These methods are called
metaheuristics and include genetic algorithms (GAs), simulated
annealing (SA), tabu search (TS), and particle swarm optimiza-
tion (PSO) among others. Metaheuristics orchestrate an inter-
action between local improvement procedures and higher-level
strategies to create a process capable of escaping from local op-
tima and performing a robust search of a solution space. From
the area of metaheuristics, GAs [7]-[9], SA [10], TS [11], as
well as PSO [12], have been proposed for the solution of SAPS
optimal sizing.

This paper initially investigates the application of two meta-
heuristic methods, namely SA and TS, for solving the SAPS
sizing problem. SA transposes the technique of annealing to the
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solution of an optimization problem. TS is a powerful iterative
optimization procedure that is characterized by its ability to
escape from local optima (which usually cause conventional
algorithms to terminate) by using a flexible memory system.
Moreover, this paper proposes a hybrid optimization method-
ology that combines the above-mentioned methods (SA and
TS) for solving the SAPS sizing problem. Hybrid methods
that contain SA and TS have been applied in various areas,
including unit commitment [13], optimal capacitor placement
[14], and nonpermutation flowshop scheduling [15]. The
proposed method has been successfully applied to design an
SAPS in the Chania region, Greece. In the study, the objective
function is the minimization of SAPS cost of energy (€/kWh),
and the design variables are: 1) WTs size, 2) PVs size, 3) diesel
generator size, 4) biodiesel generator size, 5) fuel cells size,
6) batteries size, 7) converter size, and 8) dispatch strategy.
The performance of the proposed hybrid SA-TS optimiza-
tion methodology is studied for a large number of alternative
scenarios, and it is concluded that it improves the obtained
solutions, in terms of quality and convergence, compared to the
solutions provided by individual SA or individual TS method.

II. PROBLEM FORMULATION

The SAPS optimal sizing problem has to fulfil the objective
defined by (1) subject to the constraints (3)—(9). The computa-
tions of the objective function and the constraints of the problem
are related with the results obtained by simulating the operation
of SAPS for a given time step Af, taking into account compo-
nents’ type, cost, and technical characteristics.

A. Objective Function

Minimization of the system’s cost of energy (COE)
min (COE). (H

The COE (€/kWh) of SAPS is calculated as follows:

Ca.ntot,
COE= ——— 2
Eanloadserved ( )

where Cyutot (€) 1s the total annualized cost and F,y10adserved
(kWh) is the total annual useful electric energy production.
Cantot takes into account the annualized capital costs, the annu-
alized replacement costs, the annual operation and maintenance
(O&M) costs, and the annual fuel costs (if applicable) of the
system’s components. COE is adopted since it is a very good
measure of system cost for SAPS sizing [16].

B. Constraints

1) Initial cost constraint
10 S Icmax (3)
where IC (€) is the initial installation cost of the system,

and IC,, (€) is the maximum acceptable initial cost of
the system.

2) Unmet load constraint

year

At

fUL = S fUL max (4)

Eanload
where fry, is the annual unmet load fraction, UL+ (kW)
is the unmet load during the simulation time step A¢ (h),
En10aa (kWh) is the total annual electric energy demand,
and [T, max 1S the maximum allowable annual unmet load
fraction. In this paper, At = 10 min so 52 560 summa-
tions are needed for the entire year to compute fyr,, as (4)
implies.

3) Capacity shortage constraint
yvear

3 CSay- At

fCS = At < fCS max (5)

Ea,nload
where fcg is the annual capacity shortage fraction, CSa;
(kW) is the capacity shortage during A¢, and fcg max 1S the
maximum allowable annual capacity shortage fraction. Ca-
pacity shortage is defined as a shortfall that occurs between
the required amount of operating capacity (load plus re-
quired operating reserve) and the actual operating capacity
the system can provide. Operating reserve in an SAPS with
RES technologies is the surplus electrical generation ca-
pacity (above that required to meet the current electric
load) that is operating and is able to respond instantly to
a sudden increase in the electric load or a sudden decrease
in the renewable power output.

4) Fuel consumption constraint

year
Z FCOgenAt S Fcoangcn max (6)
At

where FCogzena; is the fuel consumption of a generator
during A#, and FCo.ngen max s the maximum allowable
annual fuel consumption of the generator.

5) Minimum renewable fraction constraint

Ea.nRES

JrES = > fRES min Where 0 < fREsmin <1 (7)

Eantot

where frgs is the RES fraction of the system, F,,rEs
(kWh) is the total annual renewable energy production,
Fantor (kWh) is the total annual energy production of the
system, and fRES min 1S the minimum allowable RES frac-
tion.

6) Components’ size constraints

8iZCcomp >0V comp )

SiZ€comp < SiZ€compmax ¥V COMP )

where sizecomp, 1S the size of system’s component comp,
and si%€comp max 15 the maximum allowable size of comp.

III. SAPS COMPONENTS AND MODELING

The considered SAPS has to serve electrical load, and it can
contain seven component types:

1) WTs.

2) Amorphous silicon (a-Si) PVs.



332

3) Generator with diesel fuel.

4) Generator with biodiesel fuel.

5) Fuel cells (FCs) combined with reformer, using methanol

as a fuel.

6) Lead-acid batteries.

7) Converter.

The modeling of SAPS components is implemented as fol-
lows. The WT modeling is implemented using a power curve
profile that is based on Fuhrldander’s FL 30 model. The selected
WT has the following characteristics: rated power 30-kW AC,
cut-in speed (Vin) 3 m/s, and cut-out speed (Vi) 25 m/s. For
the WT power curve fitting, a ninth-order polynomial expres-
sion has been selected, as it provides accurate correlation with
real data, while it presents exclusively positive values for the
generated power in the interval [Vip Vo]

In the PV modeling, the output of the PV array Ppy (in kW)
is calculated from [17]

"
A

Gsro

Ppy = fpv - Pstc - (14 (Te — Tste) - Cr) (10)
where fpy is the PV derating factor, Pt is the nominal PV
array power in kW, under standard test conditions (STCs),
G 4 is the global solar radiation incident on the PV array in
kW/mr‘), Gstc is the solar radiation under STC (1 kW/mQ),
T is the temperature of the PV cells, Tstc is the STC tem-
perature (25 °C), and Cr is the PV temperature coefficient
(—0.0011/°C for a-Si). The PV derating factor is a scaling
factor applied to the PV array output to account for losses, such
as dust cover, aging and unreliability of the PV array, and is
considered to be equal to 0.80. Tz can be estimated from the
ambient temperature T;, (in °C) and the global solar radiation
on a horizontal plane G (in kW/m?) using (11) [18]

(NOCT — 20)
0.8
where NOCT is the normal operating cell temperature, which is

usually obtaining the value of 48 °C.

The diesel generator fuel consumption F' (L/kWh) is assumed
to be a linear function of its electrical power output [19]

T. =T, + G (11)

F = 0.08415 - Pragea + 0.246 - P (12)

where Prateq 18 generator’s rated power and P is generator’s
output power. When biodiesel is used instead of diesel, fuel con-
sumption is increased [20]. In this paper, a 10% increase in fuel
consumption has been considered. Moreover, a 30% minimum
allowable load ratio of P,.:eq has been assumed for each type
of generator. Methanol has been selected as FC fuel because
it presents economic, environmental, and reliability advantages
for autonomous power systems [21], while the overall FC effi-
ciency has been considered 50%. In the three types of control-
lable generators (diesel, biodiesel, and FCs), lifetime before re-
placement depends on the total number of their operating hours,
as calculated by the simulation process.

Lead-acid batteries have been modeled as devices capable of
storing a certain amount of dc electricity at fixed round-trip en-
ergy efficiency, with limits on how quickly they can be charged
or discharged, how deeply they can be discharged without
causing damage, and how much energy they can cycle before
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needing replacement. Batteries have been modeled according to
the following technical characteristics per component: capacity
1000 Ah, voltage 6 V, round-trip efficiency 80%, maximum
charge and discharge current equal to C'/5, minimum state
of charge 20%, and lifetime throughput 9600 kWh. Finally,
converter efficiency has been taken equal to 90%.

The simulation process examines a particular system config-
uration, in which components sizes satisfy constraints (8) and
(9). The necessary inputs for the simulation are: 1) annual time
series data for wind speed, solar radiation, ambient temperature,
and load, 2) component characteristics, 3) constraint bounds,
and 4) general parameters (project lifetime, discount rate). The
specific values for these data are described in Section V-A. In
the simulation, for every time step At, the available renewable
power (from WTs and PVs) is calculated and then is compared
with the load. In case of excess, the surplus renewable energy
is charging the batteries, if they are not fully charged. If renew-
able power sources are not capable to fully serve the load, the
remaining electric load has to be supplied by controllable gen-
erators and/or batteries. From all possible combinations, it is se-
lected the one that supplies the load at the least cost. When the
whole year’s simulation has been completed, it is determined
whether the system is feasible, i.e., it is checked if it satisfies the
constraints (3)—(7). After the end of simulation, the life-cycle
cost of the system is calculated by taking into account: 1) the an-
nual results of the simulation, 2) the capital, replacement, O&M,
and fuel cost (if applicable) of each component, 3) the compo-
nents’ lifetime, 4) the project lifetime, and 5) the discount rate.
Having computed the life-cycle cost, the total annualized cost
Cantot can be calculated, which represents the hypothetical an-
nual cost value that if it occurred each year of the SAPS life-
time, it would yield a net present cost equivalent to the actual
life-cycle cost [16]. The total annual useful electric energy pro-
duction Fanloadserved that is also needed for the calculation of
COE (2) is provided by simulation’s results.

An additional aspect of system operation arises, which is
whether (and how) the controllable generators should charge
the battery bank. Two common control strategies that can be
used are the load following (LF) strategy and the cycle charging
(CC) strategy. It has been found [22] that over a wide range
of conditions, the better of these two strategies is virtually as
cost-effective as an ideal predictive strategy, which assumes
the existence of perfect knowledge in future load and wind
conditions. In the LF strategy, batteries are charged exclusively
by nondispatchable RES technologies (WTs and PVs), whereas
controllable generators (diesel, biodiesel, or FCs) produce only
enough power to meet the load, if needed. An exception may
occur if the required load is less than the minimum power of the
operating controllable generators (due to minimum allowable
load ratio constraint); then the excess generated power is stored
in the batteries. LF strategy tends to be optimal in systems with
a lot of renewable power, when the renewable power output
sometimes exceeds the load. In the CC strategy, whenever the
controllable generators need to operate to serve the load, they
operate at full output power in order to achieve their maximum
efficiency at their rated (maximum) power [see (12)]. A set-
point state of charge, SOC,, has also to be set in this strategy.
The charging of the battery by the controllable generators
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will not stop until it reaches the specified SOC,. The battery,
however, can be charged further by the nondispatchable RES
technologies (WTs and PVs), if SOC, < 100%. In this paper,
three alternative values of SOC, have been considered: 80%,
90%, and 100%, so the total number of examined dispatch
strategies is 4. The CC strategy tends to be optimal in systems
with little or no renewable power. In such systems, controllable
generators produce the largest portion of power output. In order
to increase the overall efficiency of the system, it is better for
these generators to operate at their maximum efficiency (rated
power), even if the battery losses are taken into account, rather
than operating with significantly less efficiency (power) in
order to meet the load at each time step.

IV. PROPOSED METHODOLOGY

A. Overview of Simulated Annealing

In physics, annealing refers to the process of heating up a
solid to a high temperature followed by slow cooling achieved
by decreasing the temperature of the environment in steps. In the
SA algorithm, the Metropolis algorithm [23] is utilized for sim-
ulating the evolution of a physical system at a given temperature
T. By repeatedly observing this Metropolis rule of acceptance,
a sequence of configurations is generated, which constitutes a
Markov chain.

A finite time implementation of the SA algorithm can be real-
ized by generating homogeneous Markov chains of finite length
for a finite sequence of descending values of 7'. To achieve
this, a set of parameters that governs the convergence of the al-
gorithm has to be specified. These parameters form a cooling
schedule. The parameters of the cooling schedule are:

1) The initial temperature 7},.

2) The length of the homogeneous Markov chains Lyjarkov -
3) The law of decrease of 7T'.
4) The criterion for program termination.

From the above parameters, the law of decrease is the one that
draws the most attention. The geometrical law of decrease is a
widely accepted one

Tig1=a-Tg (13)
where 7}, ;1 and T}, are the temperatures at the £+ 1 and % itera-
tion of the algorithm, respectively, while a is constant (a < 1).
Typical values for a lie between 0.5 and 0.99 [23]. An alterna-
tive solution consists of resorting to an adaptive law of the form
[23]

Ty

Ty -In(146)
L+ L3-U7"1<

(14)

Tk+1 =

where oy, is the standard deviation of the values generated at
the kth Markov chain, and ¢ is a constant called distance pa-
rameter. Small §-values lead to small decrements in 7. Typical
values of ¢ are between 0.1 and 1.

B. Proposed Simulated Annealing for SAPS Optimal Sizing

The proposed SA methodology for the optimal sizing of
SAPS is composed of the following steps:
1) Setting of the parameters of the cooling schedule.

2) Random generation of an initial solution and calculation of

its energy.

3) If equilibrium is achieved, go to Step 6; otherwise, repeat

Steps 4 and 5.

4) Finding of a trial solution that is a neighbor to the current
solution of the algorithm, and calculation of its energy.
The trial solution is generated by changing randomly the
value of an SAPS parameter (component size or dispatch
strategy) in the current solution.

5) Performing of the acceptance test according to Metropolis

algorithm.

6) If the stopping criterion is satisfied, the algorithm stops;

otherwise, 1" is decreased.

The calculation of the energy of a solution depends on its fea-
sibility. If the solution is feasible, its energy is considered equal
to the value of the objective function (COE). On the other hand,
if the solution does not satisfy the constraints of the problem,
the corresponding value of COE is considered equal to a mar-
ginal value COEna.q, Which has to be greater than any obtained
value of COE, while at the same time it has to remain at the
same order of magnitude. In this paper, COEnpa.g is set equal
to 1 €/kWh. The total energy of a nonfeasible solution is then
obtained by summing the value of COEp,arg With the overall
normalized penalty function.

C. Overview of Tabu Search

TS is a powerful optimization procedure that has been suc-
cessfully applied to a number of combinatorial problems. It uses
an operation called move to define the neighborhood of any
given solution. TS can be viewed as an iterative technique that
explores a set of problem solutions by repeatedly making moves
from one solution to another, in the manner of a greatest-descent
algorithm [23]. TS is characterized by the ability to escape from
local optima and the occurrence of cycles, which usually cause
simple descent algorithms to terminate. This goal is obtained by
using a finite-size list of forbidden moves, called tabu moves,
derived from the recent history of the search.

The two main components of the TS are the tabu list restric-
tions and the aspiration criteria of the solution associated with
these restrictions. Tabu lists are managed by recording moves in
the order in which they are made. If a new attribute enters into
the tabu list, the oldest one is released from the tabu list. The
proper choice of the tabu list size is critical to the success of the
algorithm and it depends on the specific problem.

Aspiration criteria can override tabu restrictions. That is, if
a certain move is forbidden, the aspiration criteria, when satis-
fied, can reactivate this move. The most widely used aspiration
criterion removes a tabu classification from a trial move when a
move yields a solution better than the best obtained so far. How-
ever, other aspiration criteria have been also proposed [23].

D. Proposed Tabu Search for SAPS Optimal Sizing

In the proposed TS methodology for SAPS optimal sizing, the
neighborhood of a current solution contains all configurations
of similar component sizes, as well as the alternative dispatch
strategies options. More specifically, a move is defined by se-
lecting each time the next larger size (if permitted) and the pre-
vious smaller size (if permitted) of a component size, while for
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the dispatch strategy a move is defined by examining the three
remaining options of the current strategy. Since the SAPS con-
tains seven components (Section III), at maximum 14 configu-
rations with different component sizes are considered that are
added to the three remaining dispatch strategies; consequently
the maximum number of configurations that belong to the neigh-
borhood of current solution is 17.
The TS algorithm is composed of the following steps:

1) Setting of the tabu list size.

2) Generation of an initial feasible solution, and calculation
of its COE.

3) Setting of the global best solution equal to the initial solu-
tion (current solution).

4) Finding of a set of feasible trial solutions that are neighbors
to the current solution and sorting of them in ascending
order of COE.

5) Checking if the selected move of the first trial solution
belongs to the tabu list. If it belongs and the aspiration
criterion (Step 6) is not satisfied, a selection of the next
solution of the sorted set of trial solutions has to be done.
Otherwise, the solution is accepted (current solution) and
the update of the tabu list is performed by adding in it the
chosen move, and by removing from it the oldest move,
with respect to tabu list size.

6) Examination of the aspiration criterion. In the proposed
algorithm, a move aspiration is satisfied if the move yields
a solution better than the best obtained so far.

7) Update of the global best solution if the best acceptable
solution found from the trial set has a lower COE value.

8) Repeat Steps 4—7. Stop the procedure if the termination
criterion is satisfied. In this paper, the search is terminated
if a maximum predefined allowable number of iterations is
reached.

E. Proposed Hybrid Simulated Annealing—Tabu Search for
SAPS Optimal Sizing

Hybrid optimization methods combine the advantages of in-
dividual optimization methods in order to find the optimal so-
lution in a fast and effective manner. SA is a stochastic method
that excels at gravitating towards the global optimum. However,
SA is not especially fast at finding the optimum in a given so-
lution region. For this reason, SA is often combined with local
search. More specifically, SA is utilized to find the region of the
optimum, and then the local optimizer takes over to find the op-
timum. During the local search procedure, the quality of the ini-
tial solution is essential for its successful implementation. Then
the local search method is proceeding iteratively from one solu-
tion to another until a chosen termination criterion is satisfied.

This paper proposes a hybrid SA-TS optimization method-
ology for the solution of the SAPS sizing problem. In this
methodology, SA provides the initial solution. Moreover, in
order to improve the quality of results, in this paper, the con-
ventional local search method has been replaced by TS. TS can
be seen as an extension of local search, as its inherent adaptive
memory ensures that the search will not return periodically and
stack to the same solutions.
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TABLE I
CONSTRAINT VALUES FOR CASE STUDY SYSTEM

Constraint Parameter Value
Initial cost 1C 800,000 €
Unmet load JULmax 1.0%
Capacity shortage JCSmax 2.0%
Fuel availability (diesel) FCoungenmax No constraint
Fuel availability (biodiesel) FCoungenmax 40,000 L/y
Fuel availability (methanol) FCoungenmax 30,000 L7y
Renewable fraction JRESmin 50%

V. RESULTS AND DISCUSSION

A. Case Study System

In the considered SAPS, the project lifetime and the discount
rate are assumed to be 25 years and 5%, respectively. The simu-
lation time step At is taken equal to 10 min (1/6 h). The annual
wind, solar, and ambient temperature data needed for the esti-
mation of WT and PV performance refer to measurements of
the Technological Educational Institute of Crete for the moun-
tainous region of Keramia (altitude 500 m), in Chania, Crete,
Greece. The annual SAPS peak load has been considered equal
to 120 kW, whereas the necessary SAPS load profile was com-
puted by downscaling the actual annual load profile of Crete is-
land, which is the largest autonomous power system of Greece,
with 600-MW peak load and 17% min/max annual load. An ad-
ditional noise has been added in the load profile, in order to
reduce the min/max annual load ratio from 17% (Crete power
system) to 12% (SAPS).

The WT hub height has been considered 25 m, and the PVs
do not include the tracking system. The operating reserve inputs,
needed for the calculation of system’s capacity shortage, have
been considered as 5% of the average 10-min load, 30% of the
average 10-min WT output, and 15% of the average 10-min PV
output. The values of parameters involved in constraints (3)—(7)
are shown in Table I.

The cost, lifetime, and size characteristics for each compo-
nent are presented in Table II. For each component, the min-
imum size is equal to zero. Moreover, with the exception of
diesel and biodiesel generators, all components have constant
increment of their size, as Table II shows. The considered sizes
for the generators are 0, 5, 10, 20, 30, 50, 80, 100, and 120 kW.
For the SAPS sizing problem of Table II, the complete enumer-
ation method requires

10-41 -9 -9 .11 - 51 - 51 - 4 ~38-10°
R N I e N I N I Nl e N i N
WTs PVs Dsl Bio FCs Bat. Conv. Disp.

(15)

i.e., approximately 3.8 x 10° evaluations in order to find the
optimal COE (in (15), Disp. denotes the number of dispatch
strategies). The computational time for each COE evaluation is
3 s. Consequently, the evaluations of the complete enumeration
method require approximately 362 years. That is why it is es-
sential to develop alternative optimization methods to solve the
SAPS sizing problem in a fast and effective way.

B. Simulated Annealing

In the proposed SA algorithm, 73, has been set equal to 2.
The termination criterion is satisfied either if T’ reaches 1072,
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TABLE II
COMPONENT CHARACTERISTICS

Component sizecompmax | Increment Capital cost Replacement cost O&M cost Fuel cost Lifetime

WTs (30kW rated) 9WT 1 WT 70,000 €/WT 60,000 €/WT 500 €y - 20y

PVs 80 kW, 2 kW, 3,000 €/kW, 2,000 €/kW, 0 - 25y

Diesel generator 120 kW Variable 300 €/kW 300 €/kW 0.01 €/h per kW 1.3 €/L (diesel) | 20,000 oper. hours

Biodiesel generator 120 kW Variable 350 €/kW 350 €/kW 0.01 €/h per kW | 1.5 €/L (biodiesel) | 20,000 oper. hours

Fuel Cells 50 kW SkwW 3,500 €/kW 3,000 €/kW 0.02 €/h per kW | 2.0 €/L (methanol) | 40,000 oper. hours

Batteries (1000Ah, 6V) 400 bat. 8 bat. 600 €/bat. 600 €/bat. 10 €/bat. - 9,600 kWh

Converter 150 kW 3 kW 1,000 €/kW 1,000 €/kW 0 - 15y
TABLE III

COMPARISON OF SA ALGORITHM RESULTS (10 RUNS) FOR DIFFERENT LAWS
OF TEMPERATURE DECREASE

Law of temperature decrease
a=0.5 (geometrical) 0 =1 (adaptive)
Min cost (€/kWh) 0.200331 0.196647
Max cost (€/kWh) 0.224845 0.210709
Average cost (€/kWh) 0.209712 0.201829
Number of simulations 540 540+750
TABLE IV

OPTIMAL SOLUTIONS OF SA ALGORITHM FOR DIFFERENT LAWS OF
TEMPERATURE DECREASE

Law of temperature decrease
a=0.5 (geometrical) 0 =1 (adaptive)

WTs 5 6
PVs (kWp) 36 26
Dsl (kW) 50 50
Bio (kW) S 5
FCs (kW) 0 0
Batteries 352 320
Converter (kW) 78 93
Dispatch strategy LF LF
COE (€/kWh) 0.200331 0.196647
Number of simulations 540 750

or after three successive temperature stages without any new
solution acceptance. The performance of the SA algorithm is
checked for different values of Lyakov and for different pa-
rameters of the law of temperature decrease. It was found that
the choice of Latarkov = 30 reduces significantly the number
of simulations, without deteriorating the quality of the solution.
Moreover, the optimal parameter values for the laws of temper-
ature decrease are ¢ = (.5 for the geometrical law, and 6 = 1
for the adaptive law. The performance of the SA algorithm for
different laws of temperature decrease is examined in Table III,
which contains the results of 10 simulation runs. It can be con-
cluded that for the same order of magnitude of COE evaluations,
the adaptive law offers slightly better results. The variation of
the number of simulations of the adaptive law is explained by
the dependence of its temperature with the standard deviation of
the Markov chain (14). Table IV presents the optimal solutions
obtained for each law of temperature decrease, whereas Fig. 1
shows the evolution of the SA algorithm for the above-men-
tioned optimal solutions.

C. Tabu Search

In the TS algorithm, the determination of the initial feasible
solution is essential for the successful implementation of the al-
gorithm. This solution was created assuming exclusively AC
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Fig. 1. Evolution of SA algorithm for different laws of temperature decrease
(min cost solution): (a) geometrical law, (b) adaptive law.

components (WTs, diesel, and biodiesel generators) with large
RES fraction, and it kept constant in all algorithm runs. It in-
cludes 9 WTs, a 50-kW diesel generator, and a 120-kW biodiesel
generator, while it presents COE of 0.417 005 €/kWh. The ex-
amined parameters of the TS algorithm are the number of itera-
tions and the size of tabu list. The number of iterations was kept
equal to 200, as it provides the best solutions for all examined
scenarios. The TS algorithm performance for different tabu list
sizes is shown in Fig. 2, whereas Table V presents the config-
urations of optimal solution for different tabu list sizes. From
the study of Fig. 2 and Table V, it is clear that the optimal tabu
list size is 6, as smaller tabu list sizes stick in a local optimum,
while larger tabu list sizes do not search thoroughly the optimal
solution neighborhood. It should be noted that the adopted TS
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method always provides the same results, since identical ini-
tial solution and identical tabu list size have been considered.
As it can be seen from Table V, the optimal configuration con-
tains 6 WTs, 32-kW,, PVs, a 50-kW diesel generator, 304 bat-
teries, an 84-kW converter, LF dispatch strategy, and the COE is
0.194 671 €/kWh. This COE is divided as follows: WTs 40.5%,
PVs 7.5%, Dsl 22.3%, Bio 0%, FCs 0%, batteries 20.7%, and
converter 9%. The total number of performed simulations was
3708 for tabu list size equal to 6.

D. Hybrid Method

From the study of Tables IV and V, it is obvious that both ex-
amined metaheuristic methods present results of similar quality,
as well as significantly reduced computational burden compared
to the complete enumeration method. Among the two methods,
TS presents the lowest COE due to the existence of an inherent
local search mechanism, which guarantees the calculation of op-
timal solution in a given neighborhood of solutions. On the other
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TABLE V

OPTIMAL SOLUTIONS OF TS ALGORITHM FOR DIFFERENT TABU LIST SIZES

Tabu list size

2 6 10
WTs 6 6 5
PVs (kW) 24 32 66
Dsl (kW) 50 50 50
Bio (kW) 5 0 5
FCs (kW) 0 0 0
Batteries 336 304 216
Converter (kW) 87 84 96
Dispatch strategy LF LF LF
COE (€/kWh) 0.196175 0.194671 0.203858
Number of TS iterations 95 147 185
Number of simulations
for 200 TS iterations 3731 3708 3530

TABLE VI

COMPARISON OF SA (ADAPTIVE LAW-10 RUNS) WITH HYBRID SA-TS

Method
SA (adaptive) Hybrid SA - TS
Min cost (€/kWh) 0.196647 0.194671
Max cost (€/kWh) 0.210709 0.208297
Average cost (€/kWh) 0.201829 0.196962
Number of simulations 540+750 920+1130
Success rate (%) 0 80

hand, the TS disadvantages are the comparatively larger number
of performed simulations as well as the fact that the algorithm
needs to start from a feasible solution. The SA algorithm over-
comes these disadvantages, but there is no guarantee that the
final solution is optimal compared to its neighboring solutions.

In order to eliminate the drawbacks of individual metaheuris-
tics (SA and TS) as well as to fully exploit their advantages, a
hybrid optimization methodology that combines the above SA
and TS is proposed. More specifically, the application of the
TS algorithm is proposed, using as the initial (feasible) solution
the obtained result from SA methodology. The performance of
the hybrid method using the solutions of the 10 simulation runs
of SA adaptive law is examined in Table VI. The results show
the improvement of the final solution, without significantly in-
creasing the number of required simulations. The success rate of
the proposed hybrid SA-TS is 80%, that is, 8 times out of 10 sim-
ulation runs the same optimal answer (i.e., 0.194 671 €/kWh
minimum cost of energy) is obtained. The best solution was
found only by the hybrid SA-TS, as Table VI shows; that is
why the success rate is zero for SA. It should be mentioned
that the application of TS requires significantly larger compu-
tational time, i.e., 3708 simulations (Table V), instead of only
920--1130 simulations (Table VI) that are needed by the hybrid
method.

VI. SENSITIVITY ANALYSIS

The uncertainty in many SAPS variables over which the de-
signer has no control, such as wind speed, future fuel prices, and
electric load, makes the need for sensitivity analysis essential.
Moreover, in some SAPS components (such as PVs), there is
an option of choosing alternative technologies, which present
different performance and cost characteristics. In this section,
eight alternative scenarios have been developed and analyzed.
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TABLE VII
OPTIMAL RESULTS FOR EACH SCENARIO OF THE SENSITIVITY ANALYSIS

Scenario WTs * PVs * Dsl * Bio * FCs * Batterics * Converter * | Dispatch COE Total number of
(kWp) (kW) (kW) (kW) (kW) strategy | (€/kWh) | evaluations (SA+TS)

1 5(36.6%) | 28 (7.1%) |30 (16.0%) | 20 (8.5%) | 0(0%) |320(22.7%)| 78 (9.1%) LF 0.179312 1220 (840+380)

2 6 (34.3%) | 36 (7.2%) |50 (30.8%) | 5(1.2%) |5(3.4%) |248 (15.1%)| 87 (8.0%) LF 0.229038 940 (540+400)

3 6 (40.6%) | 30 (7.1%) |50 (21.8%) | 0 (0%) 0(0%) 312 (21.1%)| 87 (9.4%) LF 0.193684 858 (480+378)

4 6 (40.0%) | 22 (5.1%) | 50(22.6%) | 5(1.2%) | 0(0%) |344 (21.8%)| 87 (9.3%) LF 0.196885 980 (600+380)

5 5(32.9%) | 28(8.5%) |50(26.0%) | 5(1.3%) | 0(0%) |392(22.5%)| 84 (8.8%) LF 0.199420 793 (420+373)

6 6 (31.1%) | 34 (6.1%) | 80(39.5%) | 0 (0%) 0(0%) |248 (14.6%)| 105 (8.7%) LF 0.211251 930 (570+360)

7 7(43.7%) | 14 (3.0%) | 5(2.4%) |50 (24.4%) | 0(0%) |280 (18.4%)| 81 (8.1%) LF 0.212400 898 (510+388)

8 7 (33.6%) | 80 (12.3%) | 10 (4.7%) | 30 (13.9%) | 0(0%) |240 (24.0%)| 81 (11.5%) LF 0.147881 918 (540+378)
Initial (best) | 6 (40.5%) [ 32 (7.5%) |50 (22.3%) | 0 (0%) 0(0%) 1304 (20.7%)| 84 (9.0%) LF 0.194671 1130 (750+380)

*“The numbers in parentheses represent the share of each component on COE. For example, the share of the five WTs on COE is 36.6% for scenario 1.

All scenarios are based on the case study system of Section V-A
and include the following modifications:

1) 10% increase of wind speed;

2) 10% decrease of wind speed;

3) 5% increase of solar radiation;

4) 5% decrease of solar radiation;

5) installation of a two-axis PV tracking system (additional
PV cost: 1000 €/kW,,);
20% increase of electric load;
increase of diesel fuel price from 1.3 €/L to 2.0 €/L;
50% cost reduction of renewable energy technologies
(WTs and PVs).

Table VII presents the optimal configuration for each one of
the above eight scenarios. The numbers into parentheses in the
columns 2+8 of Table VII represent the contribution on COE
of each component for a given scenario. In each scenario, the
number of TS iterations was kept equal to 20. The study of
Table VII draws the following conclusions: 1) the wind potential
(scenario 1) is more significant than the solar potential (scenario
3) in order to achieve the minimum SAPS COE, 2) the adoption
of a two-axis PV tracking system (scenario 5) does not improve
the PV penetration due to its high cost, 3) the significance of the
RES technologies lower cost is obvious in comparison to the
higher diesel fuel price, and 4) the configurations in all the ex-
amined scenarios contain large numbers of WTs and batteries,
converters of similar sizes, negligible sizes of FCs, and adop-
tion of LF dispatch strategy.

6)
7)
8)

VII. CONCLUSION

This paper dealt with the optimal sizing problem of SAPS
that contain renewable energy technologies. The solution of
this problem includes considerable difficulties due to the large
number of design options, and the uncertainty in the values of
many important input parameters. Two popular metaheuristic
methods, namely, SA and TS, are applied and compared. The
following main conclusions were drawn: 1) the solution quality
was similar for all examined methods, and 2) the calculation
time for all methods was very short compared to the prohibitive
time required using the complete enumeration method.

By studying the particular characteristics of each method, SA
presents faster convergence in the neighborhood of optimal so-
lutions, whereas TS is more efficient in finding the best solu-
tion in a given neighborhood. For this reason, a hybrid method-
ology was proposed that combines the advantages of each ex-

amined metaheuristic method. In this hybrid SA-TS optimiza-
tion method, the solution obtained from SA was used as the ini-
tial (feasible) solution for the TS algorithm. The results showed
that the proposed hybrid method improves the solution quality,
without increasing significantly the number of required simula-
tions.

In all examined SAPS configurations, the target was their
economic and reliable operation throughout the year, with high
penetration of renewable technologies and low initial cost. The
analysis of results showed the significant contribution of wind
turbines and batteries. Methanol fuel cells were not proved cur-
rently effective due to their high cost, but in the future their use
may be significantly expanded.
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